828 research outputs found

    Algebraic Bethe ansatz for the elliptic quantum group Eτ,η(sln)E_{\tau,\eta}(sl_n) and its applications

    Full text link
    We study the tensor product of the {\it higher spin representations} (see the definition in Sect. 2.2) of the elliptic quantum group Eτ,η(sln)E_{\tau,\eta}(sl_n). The transfer matrices associated with the Eτ,η(sln)E_{\tau,\eta}(sl_n)-module are exactly diagonalized by the nested Bethe ansatz method. Some special cases of the construction give the exact solution for the ZnZ_n Belavin model and for the elliptic An1A_{n-1} Ruijsenaars-Schneider model.Comment: 23 pages, latex file, to appear in Nucl. Phys.

    Reply How to Determine a Metabolically Healthy Body Composition in Cardiovascular Disease

    Get PDF

    Open Source-based Over-The-Air 5G New Radio Sidelink Testbed

    Full text link
    The focus of this paper is to demonstrate an over-the-air (OTA) 5G new radio (NR) sidelink communication prototype. 5G NR sidelink communications allow NR UEs to transfer data independently without the assistance of a base station (gNB), which enables V2X communications, including platooning, autonomous driving, sensor extension, industrial IoT, public safety communication and much more. Our design leverages the open-source OpenAirInterface5G (OAI) software, which operates on software-defined radios (SDRs) and can be easily extended for mesh networking. The software includes all signal processing components specified by the 3GPP 5G sidelink standards, including Low-Density Parity Check (LDPC) encoding/decoding, polar encoding/decoding, data and control multiplexing, modulation/demodulation, and orthogonal frequency-division multiplexing (OFDM) modulation/demodulation. It can be configured to operate with different bands, bandwidths, and antenna settings. The first milestone in this work was to demonstrate the completed Physical Sidelink Broadcast Channel (PSBCH) development, which conducts synchronization between a Synchronization Reference (SyncRef) UE and a nearby UE. The SyncRef UE broadcasts a sidelink synchronization signal block (S-SSB) periodically, which the nearby UE detects and uses to synchronize its timing and frequency components with the SyncRef UE. Once a connection is established, the next developmental milestone is to transmit real data (text messages) via the Physical Sidelink Shared Channel (PSSCH). Our PHY sidelink framework is tested using both an RF simulator and an OTA testbed with multiple nearby UEs. Beyond the development of synchronization and data transmission/reception in 5G sidelink, we conclude with various performance tests and validation experiments. The results of these metrics show that our simulator is comparable to the OTA testbed.Comment: 8 pages, 13 figures, Accepted for MILCOM 202

    DeepSoCS: A Neural Scheduler for Heterogeneous System-on-Chip (SoC) Resource Scheduling

    Full text link
    In this paper, we~present a novel scheduling solution for a class of System-on-Chip (SoC) systems where heterogeneous chip resources (DSP, FPGA, GPU, etc.) must be efficiently scheduled for continuously arriving hierarchical jobs with their tasks represented by a directed acyclic graph. Traditionally, heuristic algorithms have been widely used for many resource scheduling domains, and Heterogeneous Earliest Finish Time (HEFT) has been a dominating state-of-the-art technique across a broad range of heterogeneous resource scheduling domains over many years. Despite their long-standing popularity, HEFT-like algorithms are known to be vulnerable to a small amount of noise added to the environment. Our Deep Reinforcement Learning (DRL)-based SoC Scheduler (DeepSoCS), capable of learning the "best" task ordering under dynamic environment changes, overcomes the brittleness of rule-based schedulers such as HEFT with significantly higher performance across different types of jobs. We~describe a DeepSoCS design process using a real-time heterogeneous SoC scheduling emulator, discuss major challenges, and present two novel neural network design features that lead to outperforming HEFT: (i) hierarchical job- and task-graph embedding; and (ii) efficient use of real-time task information in the state space. Furthermore, we~introduce effective techniques to address two fundamental challenges present in our environment: delayed consequences and joint actions. Through an extensive simulation study, we~show that our DeepSoCS exhibits the significantly higher performance of job execution time than that of HEFT with a higher level of robustness under realistic noise conditions. We~conclude with a discussion of the potential improvements for our DeepSoCS neural scheduler.Comment: 18 pages, Accepted by Electronics 202

    Visualization of multifractal superconductivity in a two-dimensional transition metal dichalcogenide in the weak-disorder regime

    Get PDF
    Eigenstate multifractality is a distinctive feature of non-interacting disordered metals close to a metal-insulator transition, whose properties are expected to extend to superconductivity. While multifractality in three dimensions (3D) only develops near the critical point for specific strong-disorder strengths, multifractality in 2D systems is expected to be observable even for weak disorder. Here we provide evidence for multifractal features in the superconducting state of an intrinsic weakly disordered single-layer NbSe2_2 by means of low-temperature scanning tunneling microscopy/spectroscopy. The superconducting gap, characterized by its width, depth and coherence peaks' amplitude, shows a characteristic spatial modulation coincident with the periodicity of the quasiparticle interference pattern. Spatial inhomogeneity of the superconducting gap width, proportional to the local order parameter in the weak-disorder regime, follows a log-normal statistical distribution as well as a power-law decay of the two-point correlation function, in agreement with our theoretical model. Furthermore, the experimental singularity spectrum f(α\alpha) shows anomalous scaling behavior typical from 2D weakly disordered systems

    Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin Films

    Full text link
    High quality WSe2 films have been grown on bilayer graphene (BLG) with layer-by-layer control of thickness using molecular beam epitaxy (MBE). The combination of angle-resolved photoemission (ARPES), scanning tunneling microscopy/spectroscopy (STM/STS), and optical absorption measurements reveal the atomic and electronic structures evolution and optical response of WSe2/BLG. We observe that a bilayer of WSe2 is a direct bandgap semiconductor, when integrated in a BLG-based heterostructure, thus shifting the direct-indirect band gap crossover to trilayer WSe2. In the monolayer limit, WSe2 shows a spin-splitting of 475 meV in the valence band at the K point, the largest value observed among all the MX2 (M = Mo, W; X = S, Se) materials. The exciton binding energy of monolayer-WSe2/BLG is found to be 0.21 eV, a value that is orders of magnitude larger than that of conventional 3D semiconductors, yet small as compared to other 2D transition metal dichalcogennides (TMDCs) semiconductors. Finally, our finding regarding the overall modification of the electronic structure by an alkali metal surface electron doping opens a route to further control the electronic properties of TMDCs

    Refined Holographic Entanglement Entropy for the AdS Solitons and AdS black Holes

    Full text link
    We consider the refinement of the holographic entanglement entropy for the holographic dual theories to the AdS solitons and AdS black holes, including the corrected ones by the Gauss-Bonnet term. The refinement is obtained by extracting the UV-independent piece of the holographic entanglement entropy, the so-called renormalized entanglement entropy which is independent of the choices of UV cutoff. Our main results are (i) the renormalized entanglement entropies of the AdSd+1_{d+1} soliton for d=4,5d=4,5 are neither monotonically decreasing along the RG flow nor positive definite, especially around the deconfinement/confinement phase transition; (ii) there is no topological entanglement entropy for AdS5_5 soliton even with Gauss-Bonnet correction; (iii) for the AdS black holes, the renormalized entanglement entropy obeys an expected volume law at IR regime, and the transition between UV and IR regimes is a smooth crossover even with Gauss-Bonnet correction; (iv) based on AdS/MERA conjecture, we postulate that the IR fixed-point state for the non-extremal AdS soliton is a trivial product state.Comment: 48 pages, 24 figures; v2: few typos corrected; v3: mistake on the choice of dominant phase is corrected, differential subtraction scheme is introduced to remove the UV cutoff-ambiguity, some of the conclusions on RG flow are changed; v4: statement about C theorem revised; v5 Final version to NP

    Hedonic and utilitarian performances as determinants of mental health and pro-social behaviors among volunteer tourists

    Get PDF
    International volunteer tourism is an emerging and sustainable trend of the global tourism industry. In this study, we attempted to provide a clear comprehension of volunteer tourists’ mental health increase and pro-social intention formation. A survey method and quantitative approach were used. Our result from the structural analysis showed that hedonic and utilitarian performances, mental health, and volunteer tourism engagement had significant associations and that these relationships contributed to improving pro-social intention. In addition, results from the metric invariance assessment revealed that the volunteer tourism engagement and pro-social intention relation was under the significant influence of problem awareness and ascribed responsibility. Mental health and engagement acted as significant mediators. The comparative importance of volunteer tourism engagement was uncovered. Overall, our results provided a sufficient understanding of volunteer tourists’ pro-social decision-making process and behaviors
    corecore